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Abstract

Quantification in modal logic is interesting from a technical and philosophical stand-
point. Here we look at quantification in autoepistemic logic, which is a moedal logic
of self-knowledge. We propose several different semantics, all based on the idea that
having beliefs about an individual amounts to having a belief using a certain type of
name for the individual.
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1 Introduction

Autoepistemic (AE) logic [21] is a logic of self-belief, or, more precisely, it is a logic
of an agent’s knowledge of his own beliefs. Typically, relationships between beliefs
and the world are expressed within the logic. For example, to state the proposition
“if my brother is rich, then I know it,” one uses:

(1) P(brother) D LP(brother).

where P(z) is the proposition that z is rich, and L is a modal operator expressing
self-knowledge. ‘

The statement (1) is propositional. Introducing full quantification into the lan-
guage of AE logic presents both a challenge and an opportunity. The challenge is to
find a natural semantics for expressions that have quantifying into a modal context:
variables that are bound outside a modal operator, but used inside it. The oppor-
tunity is that the expressive power of the logic is expanded, and it is possible to use
statements of self-knowledge for many representation problems in Al: domain closure,
tlie unique names hypothesis, minimizing class membership, and reasoning about the
equality of terms.

The semantics of AE logic is based on a belief set, a set of sentences I' that are
taken to be the agent’s beliefs. The expression L P has a simple meaning with respect
to this set: P is a member of the set. Think of the belief set as a knowledge base
containing an agent’s information about the world as a set of sentences; among these
sentences can be ones, like LP, that refer to the knowledge base itself.

There are many types of knowledge an agent may have about his own beliefs. Some
of this knowledge is about the identity of individuals that have certain properties. For
example, I may know that someone is rich, without knowing who that someone is, in
which case my beliefs would contain something like Jz. Pz, and my knowledge of my
beliefs would include

(2) L3z.Px.

Now suppose I have a stronger belief, that there is a particular person who is rich.
To express this fact, my knowledge base might contain the expression Pa for some
term « that identifies the individual in question for me. In turn, my knowledge of my
beliefs would say that I know that I have a belief that a particular individual is rich,
and this could be expressed by

(3) 3F=x.LPx.

The distinction between two statements (2) and (3) is well-known in standard epis-
temic logics with possible-worlds models. In these logics, an agent’s beliefs are repre-
sented as a set of possible worlds, intuitively the possible ways the world could be if
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the agent’s beliefs were true. The sentence (2) is true if in each such possible world,
there is some individual with property P; since it could be a different individual in
each possible world, the agent doesn’t know a particular individual for which P holds.
In contrast, (3) is true if in each possible world the same individual has property P,
so the agent knows who has the property. :

Qur treatment of quantification differs from this norm in two respects. First, as
noted, we assume an explicitly intensional interpretation of free variables in modal
contexts, so that an agent must have a certain kind of name for an individual in order
to assert (3). Second, because the logic is self-referential, statements about beliefs
can have the effect of defaults. For example, the expression

(4) Vz.P(x) D LP(z)

says that if any individual has the property P, the agent will know it. Interpreted
as one of the agent’s beliefs, (4) says that the agent believes he has full knowledge of
the members of the class P. So if the only member of P that the agent has beliefs
about is a, the agent will come to believe

(5) VYz.P(z)Dzr=a,

i.e., that there are no other members of P. We call defaults of the form (4) MIN
theories, and we will show that they h‘a.ve‘ a close relation to circumscription over
countable models [18, 26].

Another aspect of our treatment of quantifying-in is that we can reason about
the equality of terms when using defaults. Qur semantics recognizes that distinct
terms will often denote distinct individuals, but can also draw conclusions about the
equality of terms when defaults are present. This is a particularly difficult area for
other nonmonotonic logics.

In Section 2 we recall the basic definitions of AE logic without quantifying-in.
Some properties of equality in the logic are discussed in Section 3. The language
and semantics of quantifying-in are developed in Section 4, then used to discuss the
issue of knowing who an individual is in Section 5. We next concentrate on technical
results for MIN theories (Section 6) and apply them to various representational prob-
lems (Section 7). Section 8§ discusses a further refinement of MIN theories in which
predicates can be fixed during minimization, and in Section 9 we give the connection
between MIN theories with fixed equality and circumscription over countable models.
Related research is examined in Section 10.



2 Autoepistemic Logic

We first consider autoepistemic logic with equality but without free variables in modal
contexts. The treatment generally follows and extends [8§].

Let Lo be a first-order language with equality and functional terms. The normal
formation rules for formulas of first-order languages hold. A sentence of Ly is a
forrnula with no free variables; an atom is a sentence of the form P(ty,---,,). We
extend Lo by adding a unary modal operator L; the extended language is called L.
L can be defined recursively as containing all the formation rules of £y, plus the
following:

(6) If ¢ is a sentence of L, then sois L¢.

An expression L¢ is a modal atom. Sentences and atoms of Ly are called nonmodal
The argument of a modal operator cannot contain free variables, so there is no quan-
tifying into the scope of a modal atom, e.g., 3zLPz is a not a sentence. Often we
will use a subscript “0” to indicate a subset of nonmodal sentences, e.g., I'o = TN Lop.
L, is the subset of £ containing all sentences with no nested modal operators.

How are atoms of the form L¢ to be interpreted? Since the operator L refers to
the beliefs of an agent, it is natural to use a set of sentences, the belief set, as an
element of the semantics. Let I' C £ be a set of sentences; we say that a first-order
interpretation w respects I if for all sentences L¢!:

(7) wklé if ¢eT,

that is, w treats the sentence L¢ as meaning that ¢ is in the belief set I'. Logical
implication is defined, relative to a particular belief set T', as

Alr ¢ iff Vw. such that w respects I" and is a model
(8) of AwkE¢.

Because the intended meaning of L¢ is not just belief, but self-belief, the correct
belief set to use in defining an agent’s beliefs is the very belief set being defined, so
that the definition of the belief set becomes circular. Formally, we use a fixed-point
equation:

9) T={¢lAkFrd¢}.

Here the index T is the belief set of the agent, so that the interpretation of L¢
is correctly taken to be self-belief. The fixed-point equation states that an ideal
introspective agent should have a belief set in which all beliefs follow logically from

'If w respects T' and is a model of T then it is an autoepisiemic inierpreiation of T [21].

7



the base set A, under the assumption that atoms L¢ in A are treated as referring to
the belief set itself. A set of sentences which obeys (9) is called an eztension of the
base set A. Extensions are completely determined by their first-order part, called the
kernel of the extension.

We use Cn(X) to mean the first-order consequences of a first-order set of sentences
X. A sentence ¢ € L is called an AE-consequence of the theory A if it is contained
in all extensions of A.



3 Equality

The equality predicate is treated in the standard first-order way. Let the interpreta-
tion w consist of (U, v, B), where U is a universe of individuals, v is a mapping from
terms to individuals and predicate names to relations, and R is a set of relations.

Then:
(10) w ': tl = tg ]ﬁ U(t]) = 'U(tg) .
In this semantics, the following axioms and schemata all hold:

Ve.z=z -
Vey.z=y Dy==z

(11) Vzyz.z=yAy=zDz==z
.‘ Vry. z=y D [¢(z) = ¢(y)]

Here ¢(x) is any first-order formula with the free variable z. °

In AE logic, since extensions are closed under first-order consequence these ex-
pressions are also in any extension. In addition, because extensions are closed under
instantiation, all substitution instances of these expressions also hold.

The equality schema does not have much impact on modal atoms, because they
do not contain free variables. For example, Vay.x =y O [LP(z) = LP(y)] is not an
expression of £, and so is not part of the schema. But the substitution instances
a=bD[LP(a) = LP(b)] are in L, and in general they are not AE consequences of a
theory.

EXAMPLE 3.1 Let Cn{Pa, @b} be thekernel of an AE extension T'. T contains L P,
~LPb, and —~L{a="5). Let w be a first-order interpretation in which Pa and @b
hold, and for which a =5. Since w respects T and w £ a=b D [LPa = LP}),
(e=b>[LPa=LPb)isnotinT.

This example highlights the interaction between names and equality in AE logic. Take
P to be the property of being rich, « to be a descriptive term for the mayor, and b for
the police chief. An agent has proof that the mayor is rich (L Pe) and no evidence that
the police chief is (L Pb). These are statements about the intension of the terms «
and b, that is, the agent believes that whatever individual goes under the description
of “mayor,” whoever he is, is rich; and the police chief is not. It says nothing about
whether the agent knows who is denoted by these terms: for all he knows, the mayor
and the police chief could be the same individual {(assume that this is a small town
on a tight budget). So if the agent does not know that the two names refer to the
same individual, he cannot conclude that knowing one is rich implies that he knows
or does not know the other is rich. Contrast this with (¢ =06 D> [Pa = Pb]), which
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is true in all extensions. Here we are simply claiming that if & and b are the same
individual, he must be rich or poor; the names a and b are interpreted extensionally
in this context, that is, they simply denote the same individual.

The equality substitution schema is true in a modalized form, given by the next
proposition.

PROPOSITION 3.1 In any AF extension, all instances of L(a=b) o [Lg(a) = Lo(b))]
are present, where $(z) is a nonmodal formula.

Proof. Either L{a=1b) or ~L(a="5) is in every extension. If the latter,
then the schema instance is also. If the former, then a = & is in the exten-
sion, and since it is closed under first-order consequence, so is ${a) = $(b).

Since extensions are closed under S5-consequence (see [8], Proposition
3.2), L¢(a) = Lé(b) is in the extension.

From this it is possible to derive certain nonbeliefs about equality, e.g., (LPa A
=LPb) D =L(a=1).

We can exploit the self-referential nature of AE logic to draw new conclusions
about equality by explicitly asserting some defaults. For example, we may want to
infer that two descriptions for which we have differing beliefs actually refer to different
individuals. Then we would add the schema:

(12) Leg(a) A-Lp(b) Da#b.

In the example above, this would lead to the default conclusion that the mayor and
the police chief are different, because we know one of them is rich, but not the other.

The unique names assumption is that every term refers to a different individual.
This property arises naturally in the context of deductive databases [24]. We can use
equality schemata to state a flexible unique names assumption. For any two distinct
terms e and b, assert the schema

(13) -~L{a=b) Da#b.

Any names that can consistently refer to different individuals are forced to do so. If
there are no positive assertions of equality predicates in the premises A, then any
extension of A will have the unique names property.

Domain closure is the assumption that the only individuals that exist are those
referred to by the terms in a theory. This assumption is also important in the theory
of deductive databases [24]. AE logic, even with equality, is not strong enough to
assert domain closure as a default when there are infinitely many terms.

A stronger concept than domain closure is domain circumscription: only those
individuals necessary to satisfy a give theory T are assumed to exist [18]. Unlike
domain closure, domain circumscription tries to make the universe of individuals as
small as possible. In AE logic, we could try:
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(14) -~L{e#b) Da=b,

but this just says that as many names as possible refer to the same individuals. There
can also be unnamed individuals in the domain, and no ground equality statements
will restrict the number of such individuals.
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4 Quantifying-in

The language £ does not allow the presence of free variables in a modal context
(called familiarly “quantifying-in,” e.g., 3z.LPz). In this section we extend the logic
to deal with such expressions, and look at the consequences for statements of equality
and identity. ‘

Let ¢£ be defined as the sentences of Lg, together with the formation rule

(15) If ¢ is a formula of ¢£, then so is L¢.

As usual, the sentences of ¢£ are the formulas with no free variables.

It is not obvious how to extend the semantics of the logic to deal with quantified-in
expressions. Recall that the belief set I' is a set of sentences that form the beliefs
of an agent. To interpret L¢, we simply ask whether the expression ¢ is in I’ if so,
every interpretation w that respects I' must satisfy L¢. But with the quantified-in
language, we must also be able to interpret L¢(z), where ¢(z) is the proposition that
the individual = has the property ¢. In order to construct a propositional expression
whose meaning is ¢(z), we must have some way of referring to individuals in the
domain. We will give three basic methods for doing this, and show how these methods
interact with different assumptions about the nature of terms in the language.

The basis for all of these schemes is a set of terms of ¢£ that are singled out as
appropriate “names” for individuals. We call this set A, A can be any subset of
the terms of ¢L£, including all terms, in which case the language is said to have a full
name set. To distinguish elements of A from terms not in N, we call them names.

Obviously, there can be individuals in a domain that do not have a name, even
if the language has a full name set. If we restrict the semantics of gL to just those
domains in which every individual has a name, then we make the assumption of
parameter interpretations. Herbrand interpretations are one type of parameter in-
terpretation, in which every term denotes itself. Parameter interpretations are more
general than Herbrand interpretations, since every Herbrand term is unequal to all
others. In parameter interpretations, two terms can refer to the same individual.

4.1 Any-Name Semantics

The simplest scheme for reference to domain elements is to use the denotation map
v already present in the first-order interpretation w, and to let any name « € A such
that v(a) = z suffice to pick out the individual = in modal contexts. We extend the
rule for interpretations respecting a belief set (7) to the case of formulas with free
variables.

13



Any-name semantics:
w respects I' if for all formulas Lé(z) and substitutions =/k,

w,z/k = Lé(x) iff for some name t € A such
that v(t) = k, ¢(¢) € I

(16)

Here w is an interpretation and x/k means that the variable z is to refer to the
individual k; so we say that ¢(z) is believed if k, the individual z refers to, has a
name ¢ such ¢(t) is believed. The normal truth-recursion rules for quantifiers hold,

e.g.,

w = VYr.¢(z) iff for all individuals k € U,
" wa/k E d(e)

The definition of extension for ¢£ does not need any changes, but because the
concept of respecting a belief set is expanded, the resulting extensions are not the
same for the two languages. One of the most useful results in AE logic over £ is that
any set of nonmodal sentences has a unique AE extension. This result carries over to
the quantified-in language.

(17)

PROPOSITION 4.1 If A is a set of nonmodal sentences from gL, it has exactly one
AFE extension T. Ty is the first-order closure of A.

Proof. We define the sets S(n) in the following iterative fashion:

S0) ={secLo|Al=¢}
S(n) ={d€L,|AEswn) ¢}

Let T, be the set of sentences of T from £, and let S be the infinite union
of all S(z). We can show that if 7" is an AE extension of A, T, = S(n);
there is thus at most one AE extension T, with Ty = S (0), the first-order
closure of A. We prove existence by showing that § is always an AE
extension of A. See the proof of Proposition 2.1 [8, pp. 371-372] for the
details, since it applies here without change.

In addition, extensions in ¢£ are stable sets [27].

PROPOSITION 4.2 Any extension T satisfies the following properties

1. T is closed under first-order consequence.
2. IfoeT, then Lpe T.
3 IfodT, then ~LoeT.

14



Proof. The first item follows from the fact that extensions are defined
- using consequence under first-order valuations. Note that L¢(xz), with free

variable z, is treated from a first-order viewpoint as a unary predicate,

dissimilar to any other predicate, including L¢{a) for any term a.

The second two items follow from the first-order valuations respecting
the belief set. In fact, only the nonquantified form of respect (7) is needed
here, so any semantic account of quantifying-in will yield extensions that
are stable sets.

Finally, if the sentences of A do not have any nested modal operators, than the
kernel of the extension satisfies the following reduced fixed point equation.

PROPOSITION 4.3 If A is a set of senlences from L,, then

S={pelo| Al=s ¢}

if and only if S is the kernel of an extension of A.

Proof. We define the sets S(n) in the following iterative fashion:

S(1) =S8 as defined above
Sn) ={¢ € Ln| A Fsn-1) ¢}

The proof proceeds along the same lines as that for Proposition 4.1. The
only change is that we start the recursive definition with S(1) instead of

5(0).

We can use these results to explore some of the facts about quantification and
equality in modal contexts. A given individual £ may have none or many names in a
model, a circumstance which leads to some interesting behavior in extensions.

EXAMPLE 4.1 Let A = {Pa}, and N = {e, b}. By Proposition 4.1 there is a single
extension T of A, with Ty = Cn(Pa). Therefore, we know that LPe« and -LPb
are in 7. By the valuation rule for modal atoms (16), 3z.L Pz will be true in any
interpretation respecting Tp, if there is some individual z such that z = v(a).
Every interpretation has some such individual, and hence 2. LPa is true in
every model of A respecting Tp, and hence in 7. :

Another sentence contained in 7T is Vz.2=a D LPz. To see why this 1s so,
let z be an individual with z=v{«). Since LPa is in T', LPz is true in all
interpretations which respect T', and so the whole sentence is true in all such
interpretations. On the other hand, consider a similar sentence Vz.z=46 D
- LPz. It might be suspected that this sentence is a member of T', but it is
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not. For although z is the denotation of &, it may also be the denotation of a
in some first-order interpretation, and for this interpretation, L Pz will be true.
In the other direction, the sentence Va.LPz D z=a is in T, since in every
model respecting T',-only the individual named by a will make LPz true. On
the other hand, Vz. Pt D £ =a is not in T"; there is a model w of A for which
Pz is true of some individual z # a.

Asin L, in gL knowledge of properties of individuals hinges on having a name for
that individual. The expression L Pz when z is a quantified-in variable says that the
agent believes Pc to be true for some intensional concept ¢ whose denotation is z.
Using the above example, and letting a stand for the mayor, b for the chief of police,
and P for the property of being rich, we can interpret the formal results as follows.
The agent has a belief that the individual described as “the mayor” is rich, and so
affirms that, if = is that individual, LPz is a belief, because under at least one of
the names of z (namely, a), LPa is true. On the other hand, the agent cannot say
that he disbelieves that the individual y who is described as “the police chief” is rich
because this individual may have another name for which L Py is true, that is, y may
also be the mayor.

These observations hold for arbitrary extensions containing L Pa and —Pb, and we
can make this precise by introducing the meta-logical sentence ¢ = . This sentence
is true just in case whenever ¢ is in some extension (over ¢L), so is ¥. Similarly,
¢ b+ ¢ means that there exists an extension containing ¢ that does not contain 3.
Note that A = ¢ is stronger than saying that ¢ is an AE-consequence of A, since A
does not have to be the premise set of an extension, only included within it.

PROPOSITION 4.4 Let a,b € N, and let ¢(z) be any first-order formula with free
variable x. The following statements are true of any-name semantics.

Lé(a) P Fz.Lé(x)

Lé(a) P Vz.x=aD Lé(x)
—Lg(a) b Vz.x=a D -Lé(z)
Vz.x=a¢ D Ld(z) P Lé(a)
Vz.z=a D ~Lé(z) P —Lé(a)
- Voy. 2=y 5 (Lé(z) = Lé(y))
7 a=b2 (Lé(e) = Lé(b))

Proof. The first three statements can be proven from the example by a
simple generalization. For the fourth, consider an interpretation in which
Vz.z=a D Lé(z) is true. For some individual k such that v(«) =k, there
is a name b for k such that L¢(d) is in the extension. Since extensions
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are stable sets, ¢(b) is in the extension, and since v(a)=v(d), so is ¢(a),
and hence L¢(a). For the fifth statement, in any interpretation there is
some individual k for which v(a) =%, and since ~L¢(z) is true for this
individual, ¢(a) cannot be in the extension, and so ~L¢(«a) is.

The sixth statement follows directly from the rule of interpretation for
modal atoms with free variables, since the variables refer to the same indi-
viduals. Finally, the example furnishes a counterexample to the inclusion
of the last sentence in all extensions.

Note that the universal statement of substitution of equal individuals in a modal
context is in every extension, but its substitution instances over names are not. The
rule of instantiation of universal quantifiers, which holds for first-order logic, is not
valid in quantified AE logic with any-name semantics. This can be understood by
considering the subexpression L¢(z). If this formula is asserted positively in some
sentence, and we substitute a name «, we are not sure that a is the name that led
to the evaluation of Lé(x) as true, since there could be many such names. On the
other hand, if L¢(x) occurs negatively, any name can be substituted, since any such
name should make L¢(zx) false. The moral: substitution of a particular name for
z into positive modal contexts is not a valid operation within extensions, given the
any-name semantics. Substitution is valid for negative modal contexts, since ~L¢(z)
is a strong statement in any-name semantics: there is no name @ such that Lé(a) is
believed.

Finally, we note that the Barcan formula Ve Lé(z) O LVzé(z) is true in every
extension, while the converse LVx¢(z) D VzL¢(z) may be false. The reason for the
latter is that even though every individual x has the property ¢, some individuals
may not be given a name in an interpretation, and so L¢(z) will be false. By the
properties of stable sets, we can reduce the subexpression LVYz¢(x) to Va¢(z) in these
sentences. - c

PROPOSITION 4.5 For any-name semantics,
VrLe(z) b Yod(z)
V() > Valé(z).

If only parameter models are considered, then both the Barcan formula and its con-
verse are in every extension.

4.2 All-Name Semantics

An alternative scheme for reference is to assume that L¢(z) is true in case the ex-
pressions formed by substitution of all names for an individual z in the denotation

17



map are part of the belief set. The rule for interpretations respecting a belief set (16)
is modified: ‘

All-name semantics:

(18 w respects [ if for all formulas L¢(z) and substitutions z/k, .

w,z/k = Lé(z) iff for every name t € A such
that v(t) =k, ¢(¢) € -

Pfoposition 4.1 remains true, and all extensions are still stable sets. However, some
of the results for equality and substitution are reversed from any-name semantics.

PROPOSITION 4.6 Let a,b € N, with ¢(z) a nonmodal formula. The following
statements are true of all-name semantics.

Lg(a) b Fo.Lé(a)

Lé(a) W Vo.e=aD Lé(z)
-Lé(a) b Vz.z=a D ~Lé(z)
Vz.z=a D Lé(z) > Lé(a)
Ve.z=a D -Lé(z) b —Lé(a)

P Voy.z=y D (Lé(z) = Lé(y))
¥+ a=5D (Lg(a) = Lé(b))

Proof. The truth of these statements can be verified using the same
techniques as for Proposition 4.4.

Again, the rule of instantiation is not valid in quantified AE logic, but with all-
name semantics the reasons are opposite from any-name semantics. Here the positive
statement LP(z) is strong, since it says that for any name a, L¢(a) must be true. So
substitution of a particular name for = into positive modal contexts is valid within
extensions for all-name semantics. Substitution is not valid for negative modal con-
texts, since ~L¢(z) just means there is some name for z that the agent does not
connect with property P, and for any particular name a, L¢(a) may be a belief.

The results on the Barcan formula (Proposition 4.5) are the same for all-name
semantics. ' N

4.3 TUnique-Name Semantics

A specialization of the any-name and all-name semantics is to let each member of A/
stand for a unique individual. Unique names of this sort are called “standard names,”
and for any two standard names we have: :
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(19) n;#n; iffe#j.
The rule for interpretations respecting a belief set is:

Unique-name semantics:

w respects ' if every name in A refers to a unique individual
(20) in U, and for all formulas Lé(x) and substitutions z/k,
w,z/k = Lé(z) iff for any name ¢t € M such ‘
' that v(t) = k, ¢(t) € I.

Unique-name semantics merges any-name and all-name semantics, since there is ex-
actly one name for each individual. Proposition 4.1 remains true, and all extensions
are still stable sets. These are the results for equality and substitution.

PRrOPOSITION 4.7 Let n,n;,n; € N, with ¢(x) a nonmodal formula. The following
statements are true of unique-name semantics.

LPn b 33.Lé(x)

LPn P Vz.z=nD L¢(z)
-~LPn B Vz.z=n > -Lé(zx)
Vz.z=n D Lé(z) FH LPn
Vz.z=n D ~L¢(z) H -~LPn

> Vay.z =y O (Lé(z) = Lé(y))
= ni=n; D (L¢(n,) = L‘Ib(”J))

Proof.  The truth of these statements can be verified using the samie
techniques as for Proposition 4.4.

The main change is that the rule of instantiation is valid for unique-name se-
mantics, as long as only standard names are substituted into the context of modal
atoms.

The results on the Barcan formula (Proposition 4.5) are the same for unique-name
semantics.

4.4 A Note on the Modal Predicate Calculus

We have chosen a semantic approach to analyzing quantifying-in because it clearly
shows the relation between assumptions about naming individuals and self-beliefs. It
is known from the original definition of AE logic [21] that a proof-theoretic version
of the fixed-point equation (9) exists; this fixed-point can be expressed in terms of
deduction in the modal calculus K45, or weak 55.
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PRrRoOPOSITION ([8], 3.6) A set T is an AE extension of A C L if and only if it
satisfies the equatlion

T={¢eL|AULToU-LTo Fxas ¢},

where LTy = {L¢ | ¢ € TN Lo} and ~LTo = {~L¢ | ¢ ¢ T and ¢ € Lo}. This
definition can be extended to ¢£ by using the first-order version of the calculus K45.
However, the intuitions we have developed in this section are violated by the proof-
theoreitc extensions of some simple AE theories. For example, let A = {3z.LPx}.
This theory should have no extension, since there is no individual ¢ € A" such that
Pc is derivable from A. Yet there is a solution to the fixed-point equation. Let Tj
be Cn(); then the K45-consequences of AU LTqU ~LT are Tp, giving a fixed-point.
To does not contain Jz.Pz, and so T' contains ~L3z.Pz. The agent does not believe
that there is any individual with property P, yet he believes that he believes it.
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5 Knowing Who

In an ordinary epistemic logic, the expression 3z.K ¢(z) is contrasted with K 3z.¢(z).
The latter is meant to express that an agent knows that something has the property ¢,
e.g, the agent knows that somebody is rich, without necessarily being able to pick out
that individual. On the other hand, the quantified-in version expresses the fact that
the agent has a particular individual in mind who is rich; we, the observers, represent.
this fact without saying who the individual is. The formal technique was originally
suggested by Hintikka [6], and in the Al literature there are many examples: Moore’s
theory of knowledge and action [20], and Levesque’s approach to self-knowledge in
knowledge bases [11] are two well-known ones. Levesque’s work is especially appro-
priate here: he points out that the expressions 3z.L¢(x) and L3z.4(z) in a knowl-
edge base differentiate the type of information contained in it. In the first case, the
knowledge base has information about a particular individual with property #; in the
second, it just has the information that some individual has property ¢.

The contents of the knowledge base should reflect the different kinds of information
present. Since Levesque takes knowledge bases to be described by collections of
sentences, similar to the belief sets of AE logic, knowing who a particular individual
is depends on having a certain type of name for the individual, often called a standard
name. The knowledge base knows that an individual-has the property ¢ just in case
the expression ¢(e) is in the KB, where a is the standard name for the individual.
Suppose, for example, that we take an individual’s proper name to be a standard name
(this is only a good assumption for a small group of people, which is why social security
numbers are useful). Then Rich(John Doe) in the knowledge base counts as knowing
of the individual John Doe that he is rich, while Rich(richest-man-in-the-world) just
means that the knowledge base knows someone is rich, without being able to identify
that person.

Using standard names is one way in which an agent can .identify individuals, but
it is certainly not the only one. We have argued (in [7]) that an appropriate notion
of knowing who an individual is is that the agent have a description sufficient to pick
out the individual for a particular task in a particular context. For example, a robot
trying to go through a doorway in front of it needs only to have an expression of the
form Closed(dl) A Door(d1) A Dist(d1,3ft) in its knowledge base in order to take an
appropriate action relative to the door. Having a standard name for the door would
require too much: that the agent be able to distinguish this door from any other
known door, for example. :

Just what constitutes an adequate description is still a matter of research, both
in the study of epistemology, where it has a long tradition, and in the Al and com-
puter science community. Recent work of interest in the latter are the proposals of
Lespérance [10] on self-naming and Grove and Halpern [5] on multi-agent naming and
21
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reference. Grove and Halpern stress the importance of descriptive names (as opposed
to standard names) as a way of identifying particular agents in context, and go on
to give a theory of such descriptions, making names first-class objects in his modal
language, quantifying over them and introducing predicates for describing different
types of names.

We will not subscribe to a particular theory of description here, since we want
to be more abstract and remain compatible with different theories. But general

characteristics of a description theory can guide the choice of an appropriate semantics
for ¢L.

1. We make the assumption that it is the syntactic form of the name in an expres-
sion such as P(a) that is important in determining whether it is an appropriate
description or not. For example, 322-3646 is an appropriate name if the agent
is trying to dial a phone number, while phone-num(Bill) is not, since the agent
may not know the digits of Bill's phone number. The appropriateness of a name
is task and context dependent.

2. Different appropriate names may refer to the same individual, without an agent
knowing whether those individuals are the same or not. This is especially true
if the names are used in different contexts. An agent might use the name
“mayor” when talking to the phone operator and trying to get in touch with
the mayor; he might use the term “police chief” if trying to get in touch with
that individual. These are appropriate titular names, and the operator knows
how to connect the agent with the right person; yet the agent might not know
whether the mayor and the police chief are the same individual. As we have
seen, standard names do not satisfy this condition, since the refer to unique
individuals, and the agent knows they are unique.

3. There may be individuals for which the agent has no appropriate identifying
names, that is, the names do not cover the set of individuals an agent can have
beliefs about. Also, there may be terms for individuals that do not count as
identifying names (e g, Skolem constants).

How do the proposed semantics for quantified-in AE logic meet the above criteria?
The first condition is the hardest one, since it really demands a theory of appropriate
identifiers for individuals. - Since we do not want to complicate ¢£ by introducing
names as objects of the domain and subscribing to a particular theory of description,
the best that can be done is to use the facilities of the language specification to select a
set of terms N that approximate the appropriate identifiers for a class of applications.

All of the semantics use the names in A as identifying names for individuals. If
we do not make the parameter interpretation assumption (i.e., that all individuals are
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referred to by names in A), then the models of ¢£ may have unnamed individuals.
Also, if A is not coextant with the set of all terms, then some terms for individuals do
not count as identifying those individuals, thus satisfying the third condition. There
may be some cases in which we have a restricted domain and can name all individuals
with A, but in general we will have to deal with the problem of “open” domains.

The any-name and all-name semantics fulfill second condition, while the unique-
name semantics does not. The unique-name semantics is essentially the same as using
standard names. In special cases standard names are appropriate, e.g., it is possible
to tell, for any two telephone numbers, whether those numbers are the same or not
(actually, even this case is not strictly correct: there can be multiple numbers that
ring at the same location, as in large customer service operations).

The most appropriate semantics, from a representational point of view, appears
to be any-name semantics. The results of the rest of this paper are for this semantics.
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6 MIN Theories

One of the uses of quantifying-in is to specify minimization over known instances of
a predicate. We now examine a particular class of AE theories that can serve this
purpose; they are called MIN theories. Any such theory has-the form

(2‘1) A U {Va:(—'LP;-:I: D -Fz)},

where A is a set of first-order sentences and the P; are a sequence of unary predicates.”
We write M{(W; P;) to indicate the MIN theory of W over the predicates P;. The idea
behind MIN theories is to select AE valuations in which every individual not known
to have the property P; does not have thls property, i.e., to mmumze the extension
of each F;. 4

Before describing the properties of MIN theories, we need the following result on
a reduced fixed point form for their kernels. Define Atoms(N F;) to be the set of all
ground atoms of the form P:{a), with a e N. :

ProPOSITION 6.1 S is the kemel of an eztension of M(A; P) if and only if

5= {¢5 € Ly I M(A, R) I=Sﬁﬁtom5(l\f;ﬂ‘) ¢}
Proof. By Proposition 4.3, S is a kernel of a MIN _theéry‘iﬂ"

S={é€ Lo | M(A;P) Fs ¢}.

Since the only modal atoms in M(A; P;) are of the form LFP;z, the:only
sentences of S relevant to the truth of these atoms are of the form P;(a)

fora e N.

A set SN Atoms(N; P;) satisfying the equation above is called an atom base of the
theory M(A; P).

EXAMPLE 6.1 Let A/ = {ay,a2,- -}, and A=S = {Pa;}. Every interpretation w
respecting S which satisfies M(A; P) makes Pz true for = v(a,), and false for
every other z. Thus, if we define T by

T= {¢EE0|M(A P) s ¢},

2All results of this section can be readily extended to predlcates of arity greater than one.
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it is clear that T' = Cn(Vz.Pz = x =a;). Since S = TN Atoms(N; P), T is the
kernel of an extension of M(A; P). There are no other kernels, since no other
atoms Pa; can be deduced from M(A, P). ‘
Let A= {Pa,V Pa,}, and as before let S = {Pa,}. Aga.m we can show that ev-
ery valuation w respecting S and satisfying M(A; P) satisfies T = Cn(Vz.Px =
z=ay), and so T is the kernel of an AE extension of M({A; P). In this case the
kernel is not unique; there is another one Cn(Vz.Pz = x = a;). The sentence
(Vz.Pz = z=a,) V (Vz.Pz = z = a;) is an AE-consequence of M(A4; P).

Let A = {Jz Pz}, and let S = {Pa;}. Again we can show that every valuation w
respecting S and satisfying M(A; P) satisfies T = {Vz.Pr =z =q,}, and so T is
the kernel of an extension. But the choice of the constant a; was arbitrary, and
we can use any other constant in defining S and T'. Hence there are an infinite
number of extensions of M(A; P); the sentence 3!z.Pz is an AE-consequence of

M(A;:P).

These examples are very suggestive of a correspondence between MIN theories
and the minimal models of A. But we must define what we mean by minimal models,
and there are several choices. First we assume that the extensions of all predicates
other than the F; can vary across compared models. In the next section we consider
the case of fized predicates. Second, we must choose whether to allow the universe
and denotation function of comparable models to be different. As we will see in the
section on equality reasoning (7.3), the minimization of MIN theories is somewhere
between having a fixed and varying denotation function. Also, the extensions of
"M(A; P) characterize minimal models that have a parameter cover of the predicate
P: in every such model, the individuals with the property P are all named in V.
This is what the expression Vz. Px O L Pz means: if any individual has the property
P, it is believed to have it, i.e., it has a name a and Pa is in the belief set.

PROPOSITION 6.2 Let V be an atom base for M(A; P).% Every model w of M(A; P)
respecting V has a parameter cover of P, and for everya € N,

~wgEPa iff PaeV.

Proof. w has a parameter cover for P because if w,z/k |= Pz for some
individual k, then by Vz. Px O LPz and w respecting V there must be a
predicate Pa of V such that ¢ € A and v(«) = k. Similarly, if w |= Pa
then Pa must be in V. Now suppose that Pa € V for some « € . This
means LPa is in the extension, and so is Pe since it is a stable set; hence

w = Pa.

3Note: we will often use a single minimized predicate P in propositions in the rest of this paper
for clarity; the addition of multiple predicates causes no significant changes in the proofs.
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The set of ground atoms Pa such that a € A and w |="Pa is called the P-cover
of w. The P-cover is analogous to a Herbrand model for A, except that it is only
for the positive part of the predicate P, and the parameters can refer to the same
individual. In the same way that minimal Herbrand models are taken as a semantics
for logic programs, we consider models of A that have a subset-minimal P-cover.
These minimal P-covers determine the extensions of M(A; P).

PROPOSITION 6:3 Let A be a set of first-order sentences. A set V is an atom base
of M(A; P) if and only if it is°a minimal P-cover for A.

Proof. Let V be a minimal P-cover for A, and define S by

S={¢€Lo|M(4;P)=v ¢}.

We know that SN Atoms(AN; P) C V, since by definition there is a model
of A that makes V true, but no other ground P atoms. To show that S
contains V, suppose to the contrary that for some Pa € V, Pa is not in
S. Then there is 2 model w that makes V — {Pa} true, but no other P
atoms, since Yz.Pz O LPz forceés all P atoms not in V' to be false. But
we assumed V was a minimal P-cover of A, which w contradicts.

For the converse, let S be an extension of M({A; P) with atom base
V = SN Atoms(N; P). V is a P-cover of A, since by Proposition 6:2
there is a model w of A with a parameter cover of P, such that V is the
set of P atoms true in w. To show that V is a minimal P-cover, assume
that there is some model w' of A with a parameter cover of P whose P-
cover is a proper subset of V. Because A is first-order, we can choose '
to respect V. Then we have:

w' v M(4; P),

and hence {¢ | M(A; P) |=v ¢} does not contain all of V, contradicting
the assumption that V is an atom base of M(A; P).

COROLLARY 6.4 The AFE-consequences of M(A; P) are those sentences true in the
minimal P-cover models of A.

Because extensions of MIN theories depend on the presence of minimal P-covers,
first-order theories without such covers will have no extensions. This is analogous
to the case of circumscription, in which theories with no minimal models fail to
have a consistent circumscription. The following example (from [3]) illustrates this
correspondence.

ExaMPLE 6.2 Let A be the set

)
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dz. Nz AVy.[Ny D = # sy]
Yr.Nz D Nsz
Vzy.sz=sy Dz=y. |

Let N = {0,30,ss0,5550,---}. Any model of A that is a parameter cover for
N has an N-cover of the form {s'0, s+10,5'+20,--.}. There are no minimal N-
covers, and hence no extensions of A. Similarly, the circumscription of A with
respect to N is inconsistent, because there are no N-minimal models of A.

On the other hand, consider the skolemization of A (call it A’):

NO A Yy.[Ny D 0+ sy]
Yr.Nz D Nsz
Vey.se=sy Dz=y.

This theory does have one minimal N-cover, namely {N0, Ns0, Nss0,---}, so
there is one extension, all of whose models are isomorphic to the natural num-
bers, with 0 as interpreted as zero and. s as successor. Similarly, the circum-
scription of A’ with respect to N has just these models.
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7 Representational Issues

We can use the results of the previous section to state defaults about knowing all the
members of a class, about knowing all the members of a domain, and about equality
among individuals.

7.1 Comprehensive Class Knowledge

Suppose we would like to state that the only members of a class are the ones we
believe to be in the class, that is, our knowledge of the class is comprehensive. For
example, we might want to make the assumption that if we don’t know of any block
on top of block B, then B is clear.* Using £, we could add the default

On(a, B) D LOn(a, B)

for every term a in the language. But although this will enable us to conclude
—-0n(a, B) for every term, it will not sanction the generalization Vz.-On(z, B).®

In ¢£, we can use quantifying-in to refer to every individual in the domain inside
the belief operator: 4

(22) Vz.Oan(z,B) D LOa(z, B),

which is just the theory M(A; \(z)On(z, B)) for empty A. From Corollary 6.4, we
know that the sentences that are AE-consequences of M(A;A(z)On(z, B)) are just
those in the minimal On(*, B)-covered models of A. In every such model, there is no
individual on B, and so Vz.—~On(z, B) is an AE-consequence of the theory.

In general, if only a finite set of atoms Pay, Pay,--- Pa, are provable in a theory
A, then an AE-consequence of M(A; P) willbe Vz. Pz D (z=a;Vz =a.V---Vz=a,).
For a theory A that implies an infinite set of ground atoms, the AE-consequences will
depend on the structure of A. For example, if A asserts that all members of A" have
the property P, then —3z.—~ Pz will be an AE-consequence of M(A4; P).

It is also possible for an agent to express incomplete knowledge of class membership
in gL, with the statement

(23) 3Jz.d(z) A -Lé(z).

Here there is an individual who is in the class ¢ but who is not known to be by the
agent.

*This example is taken from [18]; the madequacy of default logic (and thus AE logic over E) for
this problem has been discussed in [15, 16, 22].

SThat is, unless we also assume parameter interpretations, which in general we do not want to
“do, since it requires giving a name to every individual in the domain.-

29



Generally an agent may not know either of (22) or {23). For example, consider
the simple premise set {Pa}. There is a single extension whose kernel is Cn(Pa), and
using the any-name semantic equations we find

—L{3z. ¢(z) A ~Lé(z)]
=L|Vz. ¢(z) D Lé(x)] .

are both in the extension.

(24)

7.2 Domain Closure and Domain Circumscription

The domain closure assumption is similar to that of parameter interpretations: every
element of the domain is represented by a term, but the terms need not refer to unique
individuals. In first-order logic, the domain closure assumption can be expressed for
finite sets of terms by the sentence

(25) Vz.z=a1Vz=as---Vz=a,.

There is no first-order sentence to express domain closure for a countably infinite set
of terms. We can do this in ¢£, however.

ProposITION 7.1 If A is a set of nonmodal sentences, AU {Vz.L(z =z)} has a
single extension whose kernel is the set of all first-order sentences true in models
of A whose domains are covered by N.

Proof. Let W be the set of models of A with the domain cover assump-
tion, and let S = {¢ € Lo | W = ¢}. We want to show that

S={¢€Lo] AU{Vz.L(z=12)} ks ¢}

The:only effect Vz.L(z==) has is to restrict the models of A to those |
with a domain cover. Since 5 is precisely the set of sentences true in stch
models, the equation holds.

If the set NV is finite, then Vz.L{z =) is equivalent to (25). If A is infinite, then all
models respecting Vz.L(z = z) have domains that are countably infinite or less. The
effect of this depends on the first-order axioms A. For example, if A = {Pa;, Pay,---}
for every name a; € N, then the extension of A and Vz.L(x =z) contains Vz.Puz,
which is not a first-order consequence of A.

This last example exhibits a phenomenon first noticed by Levesque [12], that the
kernel of an extension in ¢£ does not necessarily completely determine the extension.
This is unlike the case for £, in which different extensions must have different kernels
([21]). To see how this is so, consider the case above in which A asserts Pa for
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every name @ € N. Let us suppose also that all individuals (named or not) have
the property F, so that Vz.Pz is also in A. By Proposition 4.1, A has a unique
extension with Cn(A) as its kernel. This extension contains s = =L{Vz. Pz O LPz],
since if there are any unnamed individuals, they have the property P without the
agent knowing it (see the discussion leading up to Equation (24)). Now consider the
theory M(A; P). By Corollary 6.4, there is a single extension of M(A; P), since there
is exactly one minimal set of P-atoms over A/. The first-order AE-consequences of A’
are exactly the same as those of A, namely Cn(A). So we have two AE theories with
the same kernels, but differing in their modal sentences: in one, the agent has a name
for all P-individuals, and in the other, he does not know if he does. This difference is
a reflection of the increased expressive power of ¢£ relative to first-order logic, since
no first-order axioms can characterize countable models, but MIN theories can.

We can also express a kind of domain circumscription in g£, by minimizing the
inequality in the models of a theory. If A is a set of nonmodal sentences, this is
expressed by M(A; A(z,y)z #y). According to Corollary 6.4, the AE-consequences of
this theory are just the sentences true in all the minimal #-cover models of A. In
such models, since any two distinct individuals are unequal, every individual must
have a name, that is, they must be parameter models.

EXAMPLE 7.1 Let A = {a#b}. In every parameter model of A minimal in inequal-
ity statements, each element must be equal to a or to b. Hence Va.z =aVz =b
is an AE-consequence of M(4; A(z, y)z #y).
Let A= {a#bV (a#cNa#dAc#d)}. Now there are two minimal sets of
inequality statements, and thus two extensions, one restricted to domains of
cardinality two, and one to domains of cardinality three.

7.3 Reasoning about Equality

It lias been noted (see [3]) that in its original formulation, circumscription of a pred-
icate does not allow any conclusions about equality to be made that are not present
in the original theory. This is because only interpretations with the same denotation
function and domain are compared. As a consequence, reasoning about defaults some-
times turn out to be counterintuitive. The following example uses the abnormality
predicate proposed by McCarthy [19].

EXAMPLE 7.2 Consider a simple abnormality theory, with A = {Vz.Px A -ab(z) D
@z, Pa, =Qb}. We would expect Qa to be a consequence of minimizing P
(while allowing @ to vary), but it is not. The reason is that there are ab-
minimal models of A in which b and a refer to the same individual, and -Qa is
true.
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In more recent versions of circumscription [13], terms are also allowed to vary their
denotation across interpretations being compared. In this case, the example above
has Q)a as one of its consequences. However, there are also cases where allowing terms
to vary leads to undesirable results.

EXAMPLE 7.3 Consider a simple abnormality theory with A = {Vz.Pz A -ab(z) D
Qz, ab(a), ab(b)}. In this case, e =5 is a consequence of minimizing P while
allowing @ and a, b to vary. The reason is that, if we allow interpretations with
different denotations for a and b to be comparable, the interpretations in which
a and b are identical are obviously minimal in ab.

From the above example, it seems that allowing terms to vary leads to the danger of
unexpected identification of terms, at least if we do not have axioms that explicitly
say that differing terms refer to different individuals. We would like to treat equality
among terms somewhat in between the two extremes of fixed and varying denotations:
to remain agnostic about the equivalence of terms, but still be able to draw basic
default conclusions.

The comprehensive class axioms have a similar effect to minimizing the extent
of a predicate, but they allow new conclusions about equality to occur. Since the
minimization is partially based on the presence of sentences in the belief set, they do
not necessarily force identification of terms.

EXAMPLE 7.4 Redoing Example 7.2, let A = {Vz. Pz A -ab(z) D Qz, Pa, -Qb},
and assume a, b € . There is one extension of M(A; P), with kernel Cn(A, Vz.Pz D
z=a, a#b}. The conclusion that a and b are different individuals is not deriv-
able from A alone.
For the abnormality theory A = {Vz.Pz A ~ab(z) D Qu, ab(a), ab(b)}, there
is again a single extension of M(A; P) with kernel Cn(A,Vz.ab(z) D (z=aV
@ ="5)). There is no conclusion about the equality or inequality of a and b.

The comprehensive class axiom is thus intermediate between a fixed and varying
interpretation of equality, and seem to be the right level] of variation for commonsense
reasoning in abnormality theories.

Another type of default about assumption about equality is the unique names
assumption (important in the theory of deductive databases [25] and logic program-
ming [1]). In its most basic form, it asserts that all terms denote unique individuals,
i.e., it is the assumption of Herbrand models, without necessarily having a term for
every individual.® The unique name assumption is usually axiomatized by including
all sentences of the form

5Clark [1] gives 2 more complex notion of unique names, in which all constants and functions
have their free interpretation. We have not tried to formalize this interpretation in ¢.L.
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(26) a;#a; for i#7.

We can formalize a default interpretation of the unique names assumption by min-
imizing equality. For any first-order theory A, the AE theory M(A,=) has as its
consequences all sentences true in the minimal =-cover models of A.

EXAMPLE 7.5 Let A = {a;=¢a2}. In every model of A minimal in equality state-
ments, each name of A" — {a, b} must be unequal to every name in A. Hence
a; #aj is an AE-consequence of M(A; =) whenever 1# j and i and j are not
both 1 or 2.

Recently Rathmann and Winslett [23] have proposed a different type of circum-
scription, using the concept of homomorphism to compare models. They use this
technique to form a type of equality circumscription, in which distinct terms are as-
sumed to designate distinct individuals whenever possible. They are able to show
that the unique name axioms are present in the equality circumscription of a theory
T whenever T contains no positive instances of the equality predicate.
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8 Fixing Predicates

We extend MIN theories by adding a set of predicates, the fized predicates, to the
original definition. A MIN theory now has the form

A U; {Vz(~LPx D -Pa)}
(27) Ui {Vz(=LQjz D -Qjz)}
Ui {Vz(=L-Q;z D Q;z)} ,

where the F; and (); are sequences of predicates. We write M(A4; P;; Q;) to indicate
the MIN theory of A over the predicates P; with Q; fixed.

There is a reduced fixed point equation for MIN= theories that is similar to Propo-
sition 6.1. Let Lits(A; F;; ;) stand for the set of atoms P;a and literals @;a, =Q;a for
all a € M. These are the literals important in defining the fixed point of M(4; P;; @;).

PROPOSITION 8.1 S s the kernel of an extension of M(A; P;; Q;) if and only if

S ={¢ € Lo | M(4; P; Q;) FsnLis(ViP:q;) ¢}
Proof. By Proposition 4.3, S is a kernel of a MIN= theory iff

S ={¢ € Lo| M(4; P;Q;) s ¢} .
Since the only modal atoms in M(A; P; Q;) are of the form LPz, LQ;z,

and L—Q;z, the only sentences of S relevant to the truth of these atoms
are of the form Pa, Q;a, and —Q;a for a € N.

Note that, to fix @, both @ and its negation =) are minimized. In general this
will lead to multiple extensions in which various combinations of Qz and —-Qz hold
for each individual z.

EXAMPLE 8.1 Let A = {—~Pa D Qe¢}. The MIN theory M(A4;P; Q) has two
classes of extensions: one class contains {—~Pe¢,Qa}, while the other contains
{Pa,—Qa}. Thus the minimization of P does not force the acceptance of Ga in
every extension. The presence of a fixed () actually creates an infinite number
of extensions because of the presence of the countable set A" of names in L.

One consequence of the any-name semantics is that fixing any predicate causes
every element of the domain to be named by A, since any element in either the
positive or negative extent of a predicate must have a name. Further, every extension
is saturated in the fixed predicates, that is, either Q@ or —(Q}a is in the extension for
every name ¢ € A,
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PROPOSITION 8.2 Let § be the kernel of an extension of M(A; P;;Q;). Any inter-
pretation w of M(A; P:;;Q;) respecting S is @ parameter model over N'. S is
saturated with respect to the predicates Q);.

Proof. Suppose w is not a parameter model. Then there is some element
e of the domain such that e is not denoted by any name. Thus both
-~LQ;z and - L-Q;x are true for £ = e, and this leads to the contradiction
Q;z A~Qjz for z = e.

To show S is saturated, assume it is not for some ¢};. Then there
is some ¢ € A such that @;c and —~@Qjc are not in §. Then there is
some individual z for which ~LQ;z and —nL—lQ,:r hold, which leads to a
contradiction.

36



9 MIN™ Theories

The equality predicate can be fixed, just as any other predicate. We single out
the class of MIN theories M(A4; P; =) as interesting because they can be related to
minimal models of P; we call these MINT theories. Our main result is that the
extensions of a MINT theory of A are just the sentences true in all countable P-
minimal models of A. The proof is somewhat lengthy, and we defer it to the end of
this section, first pointing out the significance and limitations of the result.

THEOREM 9.1 Let A be a set of first-order sentences not containing a countably
infinite number of names from N'. The first-order sentences S true in every ex-
tension of M(A; P; =) are ezactly those true.in the countable P-minimal models

of A.

Remarks. This result shows that MIN= theories are closely related to minimization
over countable model structures. Schlipf [26] gives some useful results for this type
of minimization. First, the question of whether an arbitrary finite first-order A has a
countably infinite minimal model is £}, and the question of whether a formula holds
in all countable minimal models is II. These complexity classes are much worse than
the undecidability of first-order logic; there can be no complete proof theory for g.£.

A second result from Schlipf is that entailment over minimal countable structures
is not equivalent to entailment over all structures (unlike ordinary first-order entail-
ment, which is reducible to entailment in countable structures). He gives an example
(Example 3, p. 93) of a first-order theory that has minimal uncountable models, but
no minimal countable ones. Most of the theories we are concerned with in AI will
not have this complex a structure, however, and we can usually be satisfied with
entailment in minimal countable structures.”

Given this caveat about countable structures, we can explore the relationship
between predicate circumscription and autoepistemic logic with any-name seman-
tics. The semantics of the second-order circumscription schema Circum(A; P;; Z;)
is a second-order formula characterizing the P;-minimal models of A, allowing all
predicates Z; to vary (see [14]). Thus, assuming Z; are all the predicates of A ex-
cept P;, the first-order consequences of circumscription over countable models are the
AE-consequences of a corresponding MIN= theory M(A; P;=); that is, given that A/
contains an infinite set of names not used by A. ‘ :

From the results of [2], we know that fixed predicates are inessential, and that
any circumscription involving fixed predicates can always be reduced to one with-
out. For example, the circumscription Circum(A4; F; Z;) with @ € Z; is equivalent

TAn interesting subclass are the universal theories; it is an open gquestion whether minimal en-
tailment for these theories reducible to minimal entailment over countable models.
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to Circum({A A Q'=-Q; P, Q,Q"; Z;), where Q' is a new predicate constant. The
corresponding construct for MIN= theories is to fix @ using M(4; P;; =,Q;) (note
that there is no need to introduce a new predicate constant for =Q). Hence the first-
order consequences of parallel predicate circumscription with fixed predicates over
countable models are given by the corresponding MIN= theory.
" We now turn to the proof of the theorem. First we develop the result that a
“first-order sentence is true in the P-minimal parameter models of A just in case it is
true in every extension of M(A; P; =). Then, we show that parameter models are a
sufficient semantics for minimal entailment over all countable models.
For any parameter model w of A {over N), call a P-diagram of A the set of ground
P atoms and ground equality literals over A/ that are true in w. A P-diagram D is
minimal if there is no other diagram with the same equality literals whose P atoms are
a subset of D’s. We first show that any minimal P-diagram of A picks out a unique
extension of M(A P; =), for which w is a model; and conversely, every extensmn is
formed by using a minimal P-diagram of A as its base.

LEMMA 9.2 Let A be a set of first-order sentences, and D ¢ P-minimal diagram of
A. If § satisfies the equation

S ={¢ € La | M(4; P;=) =p 4}
then it is the kernel of an extension of M(A; P;=). |

Proof. We will show that the restriction of S to ground atomic P and
equality literals is exactly the set D, and so by Proposition 8.1 & is the
kernel of an extension of M{A; P;=). Note that D is saturated with
respect to equality literals: for all terms a and b, one of a=b or a#b
is in D. From the fixing of equality in M(A; P;=), all of these are also
contained in S. We know that SN Atoms(A; P) C D, since by definition
there is model of A U D that makes all Pc not in D false. To show that
S contains D N Atoms(VN; P), suppose to the contrary there is some Pc
in D that is not in S. Then there is a model of M(A; P; =) respecting D
that makes D — {Pc} true, but no other P atoms, since Az. Pt D LPx
forces all P atoms not in D to be false. But we assumed D was a minimal
P-diagram, and w contradicts this.

LEMMA 9.3 Let A be a set of first-order sentences. If S is the kernel of an extension
of M(A; P;=), then every model satisfying M(A; P; =) and respecting S is a P-

minimal parameter model of A.

Proof. By Proposition 8.1 S satisfies the equation
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S={¢ e Lo| M(A;P;=) Ep ¢},

where D is SN Lits(A; P; =), and D is saturated with respect to equality
literals by Proposition 8.2. Define E as the set of equality literals in
D. Let w be a model of M(A; P;=) respecting D. w is a parameter
model satisfying E by virtue of the fixed point equation for extensions; by
‘Proposition 6.2 it also satisfies the P atoms of D, and no others. Thus D
is a P-diagram of A. Further w must be minimal over parameter models
satisfying AU E. Assume to the contrary that there is a model w’ of AUE
whose P atoms are a subset of w’s; we can choose w' to respect D. Then
w' satisfies M(A; P; =), but some atom Pc of D is not a consequence of
w’, and so not in 5, a contradiction. Thus D is a minimal P-diagram of

A

PROPOSITION 9.4 Let A be a set of firsi-order sentences. A first-order sentence is
true in all the P-minimal parameter models of A if and only if it is an AE-
consequence of M(A; P;=).

Proof. Let ¢ € Lo be true in all P-minimal parameter models of A.
Suppose S is the kernel of some extension of M(A; P;=), and ¢ € S. By
Lemma 9.3, every model of M(A; P; =) respecting S is a P-minimal pa-
rameter model of A, and so S must contain ¢ by the fixed-point equation,
a contradiction.

Conversely, suppose ¢ is true in all extensions of M{A; P;=). Let w be
an arbitrary P-minimal parameter model, and assume ¢ is false in it. w
defines a minimal P-diagram D of A, which in turn defines an extension
of M(A; P;=) by Lemma 9.2, and w is a model of its kernel. Since ¢ is in
the extension, it must be true in w, a contradiction.

‘We have now shown that minimal entailment over parameter models is the same as
AE-consequence in MIN= theories. Recall that, just as Herbrand interpretations are
a sufficient semantics for universal prenex sentences, so too parameter interpretations
suffice for sets of first-order sentences. By “suffice” we mean that any such set A has a
model if and only if it has a parameter model. Note that this statement is not true in
general if A contains all members of A; for example the set {3z— Pz, Pua,, Pas,- - -},
in which Pe; is asserted for every name ¢; € A has a model but no parameter model.
Thus we must stipulate that a countably infinite set of names in A" do not appear in
A. For minimal entailment over countable models, parameter models are sufficient.

PROPOSITION 9.5 Lei ¢ be a sentence of Ly and A a set of sentences of Lo, such
that some infinite subset of names in N do not appear in either ¢ or A. Then
¢ is true in all P-minimal countable models of A (with the same domain and
denotation function) if and only if it is true in all P-minimal parameter models.
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Proof. Suppose AU {¢} has a P-minimal countable model w. Let the
constants C = {c¢;, ¢z, -} be those members of A not mentioned by ¢ or
A. Let k; be the individual referred to by ¢;. Let £ = {ey, e3,-- -} be those
individuals with no names in w. Construct w’ as follows: it has the same
relations and domain as w, but the denotation function v is modified so
that v{cy;) = e;, v(c2i—1) = ki for ¢ > 0. Every element has a name, and
furthermore the truthvalue of A and ¢ in w' is the same as w.

To show that w’ is minimal in P among parameter models, assume
there is another model w” with the same domain and denotation function
that has a smaller extension of P. By reassigning v{¢;) = ki, we could
construct a model of A and ¢ whose extension of P would be smaller than
in w, a contradiction.

In the converse direction, if AU {¢} has a minimal pa,ra,meter model
it obviously has a minimal countable model.
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10 Related Work

This scheme for extending the semantics of AE logic to the quantified-in case is similar
to that proposed for the epistemic operators in [7}. The problems of knowing who
and quantifying-in are discussed there in some detail. Some of the results that are
discussed here were first given in [9], especially the connection to circumscription.

Levesque [11] was the first to consider using a self-referential modal language to
formalize a knowledge base’s information about its own contents. Although Moore’s
autoepistemic logic [21] was developed independently, it is clear there are many ideas
in common between the two.

In [12] Levesque considers the problem of quantifying-in for AE logic, using tech-
niques previously developed in [11]. His approach differs from standard ¢£ semantics
in that it is based on the denotation of terms rather than their intension. He considers
a revision of AE logic in which a belief sets are replaced by sets of interpretations,
which he calls assignments. He then recasts the fixed point semantics of AE logic
in terms of truth-recursion equations on maximal sets of assignments, in a manner
similar to the possible-world semantics of standard epistemic logics. Let W be a set
of assignments, and w any member of W. Then:

(28) WiwEL¢ iffforallw e W, W,w' | ¢

If ¢ is nonmodal, then W,w |= ¢ is the same as w |= ¢, that is, W is used only in the
interpretation of modal atoms, just like the belief set in (7).

Because the semantics is based on assignments rather than belief sets, there is
a natural way to understand quantifying-in: W,w |= J2. Lé(x) just in case there is
some individual in w such that L¢(z) is true in all assignments of W. This is similar
to the analysis of quantifying-in given for possible-world semantics of epistemic logics,
in which the same individual is picked out in each possible world.

To axiomatize this semantics, Levesque chooses a language in which the only terms
are a countable set of standard names, so that every individual in an assignment is
denoted by a unique standard name. This simplifies the analysis of equality, but it also
bypasses the representational issues we raised in Sections 5 and 7; for example, there
is no way to state a default version of the unique names axioms. It is an interesting
conjecture, and one that we have not pursued, that our version of AE logic with the
assumption of parameter models and unique names is equivalent to Levesque’s.

Levesque does provide a sound proof theory for AE consequence that has com-
plexity II9, that is, the same as the consistency problem for first-order logic. He has
not been able to show that the proof theory is complete. Given the results of Schlipf
on the complexity of AE consequence in ¢L, it is a reasonable conjecture that it is
not.
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Closely related to free variables in modal contexts are the open defaults of default
logic. Lifschitz [16] gives a semantics for open defaults that is similar to Levesque’s
use of sets of assignments and standard names, except that he allows standard names
over arbitrary universes, including uncountable ones. He considers extensions of open
default theories for a fixed universe /. An F-consequence of an open default theory
is a sentence true in all such extensions. He is able to show a result similar to ours,
that the default logic analogue to M(A; P;=) theories characterizes the P-minimal
models of A. His result is more general, since there is no restriction to countable
models. On the other hand, because default logic only allows universal quantification
in open defaults, it is not as expressive as AFE logic over ¢L.
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11 Conclusion

Adding quantifying-in to the language of AE logic greatly increases its expressive
power. We are able to express defaults about comprehensive class knowledge (min-
imizing a predicate), domain closure, and unique names. Because the semantics is
based on the intension of names, rather than their denotation, we are also able to
make default assumptions that are sensitive to the possibility that different names de-
note different individuals, without absolutely requiring that this be so, as in Herbrand
interpretations. This kind of reasoning is problematic for circumscriptive techniques,
and not adequately addressed in default or AE logic without quantifying-in.

Given the importance of understanding the connections between the proliferating
number of nonmonotonic formalisms, 1t is encouraging to note the close correspon-
dence between AE logic with quantifying-in and consequence in countable minimal
models. Along with the results of Lifschitz [16], we get a much clearer picture of how
minimization is expressed in nonmonotonic logics that depend on fixed-point con-
structions, and it is interesting that these logics have similar expressive capabilities.
The unfortunate part of this correspondence is that the complexity of AE consequence
for ¢£ (and for open defaults under F-consequence) is too high to hope for any type
of proof theory in the general case. A recourse would be to find subsets of ¢£ whose
AE-consequences are recursive or recursively enumerable; this is certainly a target for
research.

Given the close connections between AE logic and negation as failure in logic
programming [4, 17], the results of this paper, especially concerning the nature of
reasoning about individuals and equality, might be usefully applied to the study of
quantification in negation as failure. Such a study could yield insight into the answers
that general logic programs return, especially if we want to ask, “are the answers
returned all the individuals that satisfy the query?”
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